ignore datasets

This commit is contained in:
awin-x 2025-02-21 18:50:13 +08:00
parent 890ed57a4c
commit d25540f186
30 changed files with 227 additions and 1 deletions

View File

@ -1,4 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.10.12 WSL (Ubuntu-22.04): (/home/awin/python/venvs/model/bin/python)" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.13 (models)" project-jdk-type="Python SDK" />
</project>

View File

@ -0,0 +1,106 @@
task: detect
mode: train
model: yolo12n.pt
data: coco8.yaml
epochs: 10
time: null
patience: 100
batch: 16
imgsz: 640
save: true
save_period: -1
cache: false
device: null
workers: 8
project: null
name: train
exist_ok: false
pretrained: true
optimizer: auto
verbose: true
seed: 0
deterministic: true
single_cls: false
rect: false
cos_lr: false
close_mosaic: 10
resume: false
amp: true
fraction: 1.0
profile: false
freeze: null
multi_scale: false
overlap_mask: true
mask_ratio: 4
dropout: 0.0
val: true
split: val
save_json: false
save_hybrid: false
conf: null
iou: 0.7
max_det: 300
half: false
dnn: false
plots: true
source: null
vid_stride: 1
stream_buffer: false
visualize: false
augment: false
agnostic_nms: false
classes: null
retina_masks: false
embed: null
show: false
save_frames: false
save_txt: false
save_conf: false
save_crop: false
show_labels: true
show_conf: true
show_boxes: true
line_width: null
format: torchscript
keras: false
optimize: false
int8: false
dynamic: false
simplify: true
opset: null
workspace: null
nms: false
lr0: 0.01
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 7.5
cls: 0.5
dfl: 1.5
pose: 12.0
kobj: 1.0
nbs: 64
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
bgr: 0.0
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0
copy_paste_mode: flip
auto_augment: randaugment
erasing: 0.4
crop_fraction: 1.0
cfg: null
tracker: botsort.yaml
save_dir: runs/detect/train

Binary file not shown.

After

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 178 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

View File

@ -0,0 +1,106 @@
task: detect
mode: train
model: yolo12n.pt
data: coco8.yaml
epochs: 10
time: null
patience: 100
batch: 16
imgsz: 640
save: true
save_period: -1
cache: false
device: null
workers: 8
project: null
name: train2
exist_ok: false
pretrained: true
optimizer: auto
verbose: true
seed: 0
deterministic: true
single_cls: false
rect: false
cos_lr: false
close_mosaic: 10
resume: false
amp: true
fraction: 1.0
profile: false
freeze: null
multi_scale: false
overlap_mask: true
mask_ratio: 4
dropout: 0.0
val: true
split: val
save_json: false
save_hybrid: false
conf: null
iou: 0.7
max_det: 300
half: false
dnn: false
plots: true
source: null
vid_stride: 1
stream_buffer: false
visualize: false
augment: false
agnostic_nms: false
classes: null
retina_masks: false
embed: null
show: false
save_frames: false
save_txt: false
save_conf: false
save_crop: false
show_labels: true
show_conf: true
show_boxes: true
line_width: null
format: torchscript
keras: false
optimize: false
int8: false
dynamic: false
simplify: true
opset: null
workspace: null
nms: false
lr0: 0.01
lrf: 0.01
momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1
box: 7.5
cls: 0.5
dfl: 1.5
pose: 12.0
kobj: 1.0
nbs: 64
hsv_h: 0.015
hsv_s: 0.7
hsv_v: 0.4
degrees: 0.0
translate: 0.1
scale: 0.5
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
bgr: 0.0
mosaic: 1.0
mixup: 0.0
copy_paste: 0.0
copy_paste_mode: flip
auto_augment: randaugment
erasing: 0.4
crop_fraction: 1.0
cfg: null
tracker: botsort.yaml
save_dir: runs/detect/train2

Binary file not shown.

After

Width:  |  Height:  |  Size: 536 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 539 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 179 KiB

View File

@ -0,0 +1,11 @@
epoch,time,train/box_loss,train/cls_loss,train/dfl_loss,metrics/precision(B),metrics/recall(B),metrics/mAP50(B),metrics/mAP50-95(B),val/box_loss,val/cls_loss,val/dfl_loss,lr/pg0,lr/pg1,lr/pg2
1,6.86948,0.70939,1.05707,1.14039,0.02628,0.21667,0.08764,0.05376,2.11971,4.98083,2.04794,0,0,0
2,11.0357,0.67899,1.18625,1.09058,0.05949,0.3,0.12129,0.05636,2.05773,4.70166,2.00079,1.07219e-06,1.07219e-06,1.07219e-06
3,14.7562,0.90865,1.26633,1.20842,0.06927,0.56667,0.13907,0.06017,1.97415,4.37446,1.95573,1.90876e-06,1.90876e-06,1.90876e-06
4,18.1024,0.74725,0.99608,1.08456,0.06112,0.56667,0.24832,0.08509,1.9214,4.18075,1.89617,2.50971e-06,2.50971e-06,2.50971e-06
5,21.4479,0.70276,1.00317,1.09192,0.14125,0.36109,0.2597,0.18404,1.90686,3.91017,1.86089,2.87504e-06,2.87504e-06,2.87504e-06
6,24.8385,0.79145,0.81997,1.07367,0.54119,0.24116,0.26546,0.18547,1.92964,3.65661,1.84599,3.00475e-06,3.00475e-06,3.00475e-06
7,28.4703,0.89764,1.04108,1.21462,0.52741,0.32658,0.27542,0.18197,1.83827,3.44983,1.72672,2.89884e-06,2.89884e-06,2.89884e-06
8,31.9447,0.94011,0.94038,1.21287,0.54095,0.34005,0.29672,0.20452,1.78655,3.25106,1.70385,2.55731e-06,2.55731e-06,2.55731e-06
9,35.7747,0.83725,0.83766,1.22182,0.55701,0.35369,0.31601,0.22002,1.69535,3.09446,1.59676,1.98016e-06,1.98016e-06,1.98016e-06
10,40.787,0.81827,0.87845,1.09094,0.56054,0.36667,0.32583,0.24564,1.63002,2.96068,1.54419,1.16739e-06,1.16739e-06,1.16739e-06
1 epoch time train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B) metrics/mAP50(B) metrics/mAP50-95(B) val/box_loss val/cls_loss val/dfl_loss lr/pg0 lr/pg1 lr/pg2
2 1 6.86948 0.70939 1.05707 1.14039 0.02628 0.21667 0.08764 0.05376 2.11971 4.98083 2.04794 0 0 0
3 2 11.0357 0.67899 1.18625 1.09058 0.05949 0.3 0.12129 0.05636 2.05773 4.70166 2.00079 1.07219e-06 1.07219e-06 1.07219e-06
4 3 14.7562 0.90865 1.26633 1.20842 0.06927 0.56667 0.13907 0.06017 1.97415 4.37446 1.95573 1.90876e-06 1.90876e-06 1.90876e-06
5 4 18.1024 0.74725 0.99608 1.08456 0.06112 0.56667 0.24832 0.08509 1.9214 4.18075 1.89617 2.50971e-06 2.50971e-06 2.50971e-06
6 5 21.4479 0.70276 1.00317 1.09192 0.14125 0.36109 0.2597 0.18404 1.90686 3.91017 1.86089 2.87504e-06 2.87504e-06 2.87504e-06
7 6 24.8385 0.79145 0.81997 1.07367 0.54119 0.24116 0.26546 0.18547 1.92964 3.65661 1.84599 3.00475e-06 3.00475e-06 3.00475e-06
8 7 28.4703 0.89764 1.04108 1.21462 0.52741 0.32658 0.27542 0.18197 1.83827 3.44983 1.72672 2.89884e-06 2.89884e-06 2.89884e-06
9 8 31.9447 0.94011 0.94038 1.21287 0.54095 0.34005 0.29672 0.20452 1.78655 3.25106 1.70385 2.55731e-06 2.55731e-06 2.55731e-06
10 9 35.7747 0.83725 0.83766 1.22182 0.55701 0.35369 0.31601 0.22002 1.69535 3.09446 1.59676 1.98016e-06 1.98016e-06 1.98016e-06
11 10 40.787 0.81827 0.87845 1.09094 0.56054 0.36667 0.32583 0.24564 1.63002 2.96068 1.54419 1.16739e-06 1.16739e-06 1.16739e-06

Binary file not shown.

After

Width:  |  Height:  |  Size: 284 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 315 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 311 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 230 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 377 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 373 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 178 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 536 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 539 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 377 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 373 KiB

View File

@ -4,7 +4,7 @@ from ultralytics import YOLO
model = YOLO("yolo12n.pt")
# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
results = model.train(data="coco8.yaml", epochs=10, imgsz=640)
print(results)
# Evaluate the model's performance on the validation set